NEW ALKALOIDS FROM Haplophyllum

V. I. Akhmedzhanova

UDC. 547.944/945

The new alkaloid foliphorin is isolated from Haplophyllum foliosum (Rutaceae). Spectral data establish the structure as 1-methyl-4-methoxy-8(2'-O-acetyl-3'-hydroxy-3'-methylbutyloxy)-2-quinolone. Dihydro-haplamine, which is observed for the first time in nature, is obtained from Haplophyllum perforatum.

In continuation of the study of alkaloids from plants of the *Haplophyllum* genus (Rutaceae) [1], new alkaloids with mp 83-84°C (1) and 231-232°C (2), respectively, were isolated from the above-ground parts of *H. foliosum* Vved. and *H. perforatum* Kar. et Kir.

Compound 1, called foliphorin, has the formula $C_{18}H_{23}NO_6$, M⁺ 349 (mass spectrometry).

The UV spectrum of foliphorin exhibits maxima at 214, 233, 251, 285, and 326 nm, characteristic of 2-quinolone alkaloids [2] and similar to the spectrum of foliosidin (3) [3, 4]. The IR spectrum contains absorption bands for active H (3300 cm^{-1}), ester (1741 cm^{-1}), and amide carbonyl (1638 cm^{-1}).

The mass spectrum of foliphorin has the same set of peaks (m/z 307, 292, 248, 205, 174, 162, 59) as foliosidin [4], with the exception of the molecular ion, which is located at higher mass (M^+ 349) and differs from the corresponding peak of 3 (M^+ 307) by 42 amu.

This fact and the presence in the IR spectrum of 1 of an absorption band for an ester suggests that the isolated alkaloid is an acetyl derivative of foliosidin. The ¹H NMR spectra of foliphorin confirm this.

Signals in the spectrum of 1 and 3 [4, 5] appear for the four aromatic protons at δ 7.63 (1H, m, H-5), 7.12 (2H, m, H-6, H-7), and 6.00 ppm (1H, s, H-3), for the O-methylene protons (4.35 ppm, 1H, dd, J₁ = 10 Hz, J₂ = 3 Hz, and 4.17 ppm, 1H, dd, J₁ = 10 Hz, J₂ = 7 Hz), methoxyl (3.90 ppm, 3H, s), N-methyl (3.82 ppm, 3H, s), and gem-dimethyl (1.31 and 1.27 ppm, 3H each, s) groups.

However, in contrast with foliosidin, the spectrum of foliphorin contains a signal for only one hydroxyl group at 5.15 ppm (1H, s). A 3-proton singlet at 2.11 ppm belonging to the protons of the acetyl group is seen instead of the signal of the second hydroxyl. Furthermore, the signal for H-2' in the spectrum of foliphorin shifts to weak field by more than 1 ppm compared with the same signal in the spectrum of foliosidin. It occurs at 5.34 ppm (1H, dd, $J_1 = 7$ Hz, $J_2 = 3$ Hz). Hence, this proton is geminal to the acetoxy group that according to this should be located on C-2'.

Thus, foliphorin (1) differs from foliosidin in that the secondary hydroxyl group of the latter is acetylated in 1. Foliphorin has the structure 1-methyl-4-methoxy-8(2'-O-acetyl-3'-hydroxy-3'-methylbutyloxy)-2-quinolone (1).

The UV spectrum of **2** exhibits absorption bands at 216, 232, 278, 287, and 334 nm. This is characteristic of 2quinolone derivatives [2]. Its IR spectrum contains absorption bands for active H at 3150 cm⁻¹ and an amide carbonyl at 1650 cm^{-1} .

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (371) 120 64 75. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 634-636, September-October, 1999. Original article submitted April 26, 1999.

0009-3130/99/3505-0552\$22.00 [©]1999 Kluwer Academic/Plenum Publishers

The mass spectrum of the alkaloid has a peak for the molecular ion with m/z 259 (M⁺, 100%), which differs from the corresponding peak of haplamine [6] by 2 amu. This suggests that the isolated compound is a dihydro derivative of haplamine that was prepared previously from it [7]. Direct comparison of the samples demonstrated that they are identical.

Thus, the isolated alkaloid is dihydrohaplamine and has the structure 2. Dihydrohaplamine is observed for the first time in nature.

EXPERIMENTAL

General comments. Silica gel KSK was used for column chromatography. Thin-layer chromatography used the same grade of silica gel with 5% gypsum and toluene-ethylacetate-acetic acid (5:4:1) eluent. The chromatograms were visualized with Dragendorf reagent.

UV, IR. PMR, and mass spectra were recorded on a Lambda 16 UV/VIS spectrometer, Perkin—Elmer System 2000 FT-IR, Tesla BS-567 A (100 MHz, CDCl₃, δ -scale, 0 = HMDS), and MX 1310 with a direct probe into the ion source, respectively.

Isolation of Foliphorin from *H. foliosum*. Mother liquor (1 g) after purification of techical foliosidin (3.5 g) that was isolated from 50 kg of the above-ground part of the plant (Takzhikistan, flowering phase) was treated with ether (100 ml). The solid after evaporation of solvent (0.45 g) was crystallized twice from a hexane-ether (7:3) mixture to give foliphorin (70 mg). The method for isolating foliosidin has been published [8].

Foliphorin (1), mp 83-84°C (from hexane-ether).

UV spectrum (ethanol, cm⁻¹): λ_{max} 214, 233, 251, 274 (sh), 285, 326; λ_{max} 219, 241, 281, 298.

IR spectrum (v_{next} , cm⁻¹): 3300 (OH), 1741 (O–CO), 1638 (N–CO), 1576, 1490, 1397, 1241, 1073, 1061, 825, 794, 735. Mass spectrum, m/z (%): 349 (M⁺, 43), 334 (M - 15, 31), 307 (9).

Isolation of Dihydrohaplamine from *H. perforatum*. Mother liquor (5 g) after purification of technical haplamine (20 g) that was isolated from 20 kg of the above-ground part of the plant (Dzhungarskii Alatau, flowering phase) was treated twice with a warm mixture of hexane-ether (7:3) (100 ml each). The solutions were combined. The solid (1.5 g) after distillation of the solvent were chromatographed on a silica-gel column (1:100) using ether. The solid from the first eluates was separated and crystallized from acetone to give dihydrohaplamine (50 mg).

The method for isolating haplamine has been published [7].

Dihydrohaplamine (2), mp 231-232°C (acetone).

IR spectrum (v_{max} , cm⁻¹): 3150 (NH), 1650 (N–CO), 1604, 1503, 1480, 1460, 1420, 1370, 1315, 1220, 1170, 1120, 1040, 860, 820, 770, 715.

Mass spectrum, m/z (%): 259 (M⁺, 100), 216 (45), 204 (65), 203 (71), 188 (28), 168 (25).

¹H NMR and UV spectral data of **2** have been published [7].

REFERENCES

- 1. V. I. Akhmedzhanova, I. A. Bessonova, and S. Yu. Yunusov, Khim. Prir. Soedin., 84 (1986).
- A. W. Sungster and K. L. Stuart, Chem. Rev., 65, 69 (1965); I. A. Bessonova and S. Yu. Yunusov, Khim. Prir. Soedin., 303 (1977).
- 3. M. Eskairov, G. P. Sidyakin, and S. Yu. Yunusov, Dokl. Akad. Nauk Uz. SSR, No. 5, 23 (1958).
- R. Shakirov, M. V. Telezhenetskaya, I. A. Bessonova, S. F. Aripova, I. A. Israilov, M. N. Sultankhodzhaev, V. I. Vinogradova, V. I. Akhmedzhanova, T. S. Tulyaganov, B. T. Salimov, and V. A. Tel'nov, *Khim. Prir. Soedin.*, 957 (1996).
- 5. M. R. Yagudaev and S. Yu. Yunusov, Khim. Prir. Soedin., 201 (1968).
- 6. V. I. Akhmedzhanova, I. A. Bessonova, and S. Yu. Yunusov, Khim. Prir. Soedin., 109 (1974).
- 7. V. I. Akhmedzhanova, I. A. Bessonova, and S. Yu. Yunusov, Khim. Prir. Soedin., 320 (1976).
- 8. V. I. Akhmedzhanova, I. A. Bessonova, and S. Yu. Yunusov, Khim. Prir. Soedin., 803 (1980).